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Abstract

This paper presents an exact analytical solution of 2D transient temperature, caused by a non-periodical pulse

heating of a cylindrical two-layer slab. The corresponding partial differential equations are solved step-by-step, using

the separation of variables technique. Analytical/computational procedure for eigenvalue derivation is considered

separately. General initial assumptions, such as existence of thermal contact resistance, thermal conduction and dif-

fusion anisotropy, radiative heat losses, non-uniform heating, and finite absorption depth are accounted in the solution.

Numerical simulations of temperature distribution throughout the sample are given at the end of the paper.
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1. Introduction

Composite, multi-layered, anisotropic, reinforced,

and generally all kind of structured materials have found

numerous applications in engineering and science in the

last decades. Two and three-dimensional heat conduc-

tion in such materials are one of the most important

physical phenomena needed to be theoretically or

experimentally considered. In that sense, there are

numerous contributions available in scientific journals

and books.

Regarding the theory, analytical mono-dimensional

heat conduction throughout a multi-layer system, de-

scribed by simple Cartesian or cylindrical geometry, is
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studied very often in detail, comprising different

boundary and initial conditions. However, there are no

many published examples treating multi-dimensional

heat conduction in such a system. Salt [1,2] made a

comprehensive study of two-dimensional transient heat

conduction in composites in the Cartesian coordinate

system, but neglecting thermal contact resistance and

supposing the isotropy of layers. Similar problem of

three-dimensional transient conduction in composite

slab is treated by Mikhailov and €OOzis�ik [3] with partic-

ular attention to the computational procedure of eigen-

values earlier proposed by Mikhailov and Vulchanov [4].

Yan et al. [5] published theoretical research of the same

problem but with thin film acting as a heat source. Re-

cently, Aviles-Ramos et al. [6] offered an exact transient

solution for the case of rectangular shaped partially

isotropic composite. In cylindrical coordinate system

Abdul Azeez and Vakakis [7] applied double integral

transformation to obtain the solution of two-dimen-

sional semi-infinite composite media, but supposing the

perfect contact between layers and thermal isotropy.
ed.
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Nomenclature

a thickness of the first layer

A, B, C, D coefficients

b thickness of the second layer

c specific heat

d sample radius

df radius of heated region

f function whose zeros are eigenvalues

h axial heat transfer coefficient

hr radial heat transfer coefficient

k?; kk normal- and parallel-to-sample-plane ther-

mal conductivity

K ratio between parallel- and normal-to-sam-

ple-plane thermal conductivity

Q pulse heating energy, absorbed by sample,

per square meter

r radial coordinate

Rc thermal contact resistance

s, N , P solution functions

t time

T transient temperature

x axial coordinate

Greek symbols

a?; ak normal- and parallel-to-sample-plane ther-

mal diffusivity

b, k independent eigenvalues

e absorption depth

u spatial distribution of absorbed pulse energy

U radial component of transient temperature

c, g dependent eigenvalues

C temporal component of transient tempera-

ture

H temporal pulse function

q density of material

s pulse heating duration

W axial component of transient temperature
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General assumptions of materials’ thermal anisotropy

and finite contact resistance were taken by Cole and

McGahan [8] as the extension of their previously pub-

lished theory [9]. They studied in cylindrical coordinate

system heat conduction in multi-layers excited by laser

absorption and used integral Hankel transformation and

Green’s functions to solve particular boundary value

problem that include the continuous heat generation.

This paper treats, using separation of variable tech-

nique, two-dimensional heat conduction in a composite

slab heated discontinuously by a short laser pulse,

comprising also the assumptions considered by Cole and

McGahan [8]. Besides, the paper considers the influence

of the laser pulse duration and offers two solutions: one

supposing the instantaneous pulse and the other with the

finite pulse time. Also, it presents the results derived

from both general and also uniform distribution of ab-

sorbed pulse energy.

The reason of such analysis is to provide the ana-

lytical solution of a particular problem of 2D transient

heat conduction through the small-sized media (thin

films, for example) where the numerical solution, ob-

tained by any of the most convenient numerical proce-

dures, such as the alternate direction implicit (ADI)

method or Crank–Nicholson procedure, may not be

sufficiently reliable and exact. In comparison to the

previous analytical solutions, this paper dealing with

the simple separation of variable technique, supposes the

most general boundary and initial conditions, which can

be useful, for example, in heat conduction modeling or

dynamical methods for thermophysical characterization

of layered materials [10].
2. Statement of the problem

Let two-layer composite sample be in the cylindrical

form, as presented on Fig. 1(a). The layers are from

different materials, characterized by proper thermo-

physical properties, such as thermal conductivity, k, heat
capacity, c, and density, q. In addition, let both mate-

rials be anisotropic regarding theirs thermal conductiv-

ities in such a way that one distinguishes k1k and k2k for
parallel, and k1? and k2? for perpendicular direction to

the sample plane. Assuming a non-ideal contact between

the layers, one needs to consider, also, the finite thermal

contact resistance, Rc.

Heat transfer through the sample could be mathe-

matically described by the cylindrical coordinate system,

as presented on Fig. 1(b), so that the contact between

the layers and the sample center represent zero in both

axial and also radial direction. Thickness of first and

second layer is a and b, and sample radius is d. Axial and

radial heat transfer coefficients h1, h2, hr1, and hr2, de-
scribe linear boundary conditions of third kind between

sample surfaces and environment. The temperature of

the sample environment, as well as the sample initial

temperature before the heating begins, are assumed to

be zero.

Let an initial radiant flux of duration s and spatial

energy distribution described by a non-dimensional

function uðrÞ begin to impact at time t ¼ 0 the front

sample side on the centered circular surface of radius df ,
as shown on Fig. 1(b). Let Q be a part of energy per

square meter of the flux, absorbed in a very thin volume

of thickness e (e � a) and radius df of the first layer. The



Fig. 1. (a) Two-layer composite sample; (b) Corresponding cylindrical coordinate system.
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heat, thus generated, propagates throughout the sample

by conduction, axially and radially, from front to back

sample side and from center to periphery. If one assumes

that there is no heat source and sink in the sample,

thermophysical properties are independent on tempera-

ture (usually justified for small amplitudes of transient

temperature), and, for instance, initial flux is infinitely

short, i.e. having the form of Dirac pulse (s ¼ 0), one

can set the system of linear partial differential equations

as follows

k1?
o2T1
ox2

þ k1k
1

r
oT1
or

�
þ o2T1

or2

�
¼ q1c1

oT1
ot

;

� a6 x < 0; 06 r6 d; t > 0 ð1aÞ

k2?
o2T2
ox2

þ k2k
1

r
oT2
or

�
þ o2T2

or2

�
¼ q2c2

oT2
ot

;

0 < x6 b; 06 r6 d; t > 0 ð1bÞ

with corresponding boundary and initial conditions

oT1
ox

¼ h1T1; x ¼ �a; t > 0 ð2aÞ

oT2
ox

¼ �h2T2; x ¼ b; t > 0 ð2bÞ

k1?
oT1
ox

¼ k2?
oT2
ox

; x ¼ 0; t > 0 ð2cÞ

T2 � T1 ¼ k1?Rc
oT1
ox

; x ¼ 0; t > 0 ð2dÞ

k1k
oT1
or

¼ �hr1T1; r ¼ d; t > 0 ð2eÞ
k2k
oT2
or

¼ �hr2T2; r ¼ d; t > 0 ð2fÞ

T1 ¼

Q
q1c1e

uðrÞ; �a6 x6 � aþ e; 06 r6 df ; e � a

0; �aþ e6 x6 0; 06 r6 df ; t ¼ 0

0; �a6 x6 0; df < r6 d

8><
>:

ð2gÞ

T2 ¼ 0; t ¼ 0 ð2hÞ

3. Analytical solution

The problem stated in Eqs. (1) and (2) can be re-

solved by the separation of variables method, but with

one restriction: boundary conditions of the lateral

sample surfaces (2e) and (2f) must be of first or second

kind. It means that radial heat transfer coefficients must

be equal to zero (hr1 ¼ hr2 ¼ 0), i.e. heat flux over

the lateral sample surface (adiabatic conditions), or the

temperature of lateral surfaces must be set to zero. The

same condition was taken in [5] for a rectangular-shaped

sample. The reason of such assumption will be discussed

later in this section.

Supposing that the temperature T represent a prod-

uct of three functions, each depending of either one

space or one time variable,

T ðx; r; tÞ ¼ WðxÞUðrÞCðtÞ ð3Þ

the partial differential Eqs. (1) can be, therefore,

rewritten as

1

W1

o2W1

ox2
þ K1

1

U1

1

r
oU1

or

�
þ o2U1

or2

�
� 1

a1?

1

C1

oC1

ot
¼ 0

ð4aÞ
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1

W2

o2W2

ox2
þ K2

1

U2

1

r
oU2

or

�
þ o2U2

or2

�
� 1

a2?

1

C2

oC2

ot
¼ 0

ð4bÞ

where a? ¼ k?=ðqcÞ is thermal diffusivity in perpendi-

cular direction and K ¼ kk=k?. Eq. (4) hold only if each

addend is equal to a constant, independent of any space

or time variable, i.e. when

1

C1

oC1

ot
¼ 1

C2

oC2

ot
� �b2 ð5Þ

1

U1

1

r
oU1

or

�
þ o2U1

or2

�
¼ 1

U2

1

r
oU2

or

�
þ o2U2

or2

�
� �k2 ð6Þ

and consequently

1

W1

o2W1

ox2
¼ � b2

a1?
þ K1k

2 � �c2 ð7aÞ

1

W2

o2W2

ox2
¼ � b2

a2?
þ K2k

2 � �g2 ð7bÞ

New differential Eqs. ((5)–(7)) are to be solved separately

considering corresponding boundary and initial condi-

tions derived from Eqs. ((2a)–(2e), (2h)).

In order to obtain new or separated boundary and

initial conditions, parameters hr1 and hr2 from (2e) and

(2f) must be first set to zero, i.e. assume either adiabatic

or invariant boundary conditions on both lateral sample

surfaces. In opposite, the radial components of tem-

perature U1 and U2 would always be different (except

when k1k ¼ k2k and hr1 ¼ hr2) and the separation of the

contact boundary condition in (2c) would not be pos-

sible. Separated boundary and initial conditions are then

as follows: 1

oW1

ox
¼ h1W1; x ¼ �a; t > 0 ð8aÞ

oW2

ox
¼ �h2W2; x ¼ b; t > 0 ð8bÞ

k1?
oW1

ox
¼ k2?

oW2

ox
; x ¼ 0; t > 0 ð8cÞ

W2 �W1 ¼ k1?Rc
oW1

ox
; x ¼ 0; t > 0 ð8dÞ

oU1

or
¼ oU2

or
¼ 0; r ¼ d; t > 0 ð8eÞ
1 For the purpose of unity accordance in (3), radial and

temporal components are dimensionless while the axial holds

the unit Kelvin, as it stated in (8f) and (8h).
W1 ¼
Q

q1c1e
; �a6 x6 � aþ e; e � a

0; �aþ e6 x6 0

�
t ¼ 0 ð8fÞ

W2 ¼ 0; t ¼ 0 ð8gÞ

U1 ¼
uðrÞ; 06 r6 df
0; df < r6 d

�
t ¼ 0 ð8hÞ

U2 ¼ 0; t ¼ 0 ð8iÞ

From (6) and (7), one can see that the eigenvalues k and

b are independent, while those c and g depends on the

first two. In other words, for each eigenvalue ki
(i ¼ 1; 2; . . .) and bn (n ¼ 1; 2; . . .), one needs to calculate

cn;i and gn;i.
The complete sample temperature is equal to sum-

mation of solutions for each independent eigenvalue k
and b, or

T ðx; r; tÞ ¼
Xþ1

i¼1

Xþ1

n¼1

Pn;iWn;iðxÞUiðrÞCnðtÞ ð9Þ

where the coefficients Pn;i are derived from the property

of eigenfunctions orthogonality and depend on the ini-

tial conditions.

The general solutions of Eqs. ((5)–(7)) are, respec-

tively,

C1n ¼ C2n ¼ e�b2nt ð10Þ

U1i ¼ U2i ¼ J0ðkirÞ ð11Þ

and

W1n;i ¼ A sinðcn;ixÞ þ B cosðcn;ixÞ ð12aÞ

W2n;i ¼ C sinðgn;ixÞ þ D cosðgn;ixÞ ð12bÞ

Eigenvalues ki (i ¼ 1; 2; . . .) represent positive roots of

the transcendental equation obtained from (11) applying

the boundary condition (8e):

kiJ1ðkidÞ ¼ 0 ð13Þ

Solutions of Eq. (13) are obtainable by some numerical

technique, for example by well-known Newton–Raph-

son method. 2 The first root, k1 ¼ 0, is taken in con-

sideration, as suggested in [11] for the case of adiabatic

boundary condition using the cylindrical coordinate

system.

Introducing the boundary conditions ((8a)–(8d)) in

(12), one can derive a linear algebraic system over the

coefficients A, B, C, and D as
2 The corresponding iteration formula is
yðiÞkþ1

yðiÞk
¼

1� J1ðyðiÞk Þ
yðiÞk J0ðyðiÞk Þ � J1ðyðiÞk Þ

, where yðiÞk � ki=d with yðiÞ0 as an arbi-

trary chosen value.
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s1n;i s2n;i 0 0

0 0 s3n;i s4n;i

k1?cn;i 0 �k2?gn;i 0

k1?Rccn;i 1 0 �1

2
66664

3
77775

A

B

C

D

2
66664

3
77775 ¼ 0 ð14Þ

where

s1n;i � k1?cn;i cosðcn;iaÞ þ h1 sinðcn;iaÞ ð15aÞ

s2n;i � k1?cn;i sinðcn;iaÞ � h1 cosðcn;iaÞ ð15bÞ

s3n;i � k2?gn;i cosðgn;ibÞ þ h2 sinðgn;ibÞ ð15cÞ

s4n;i � �k2?gn;i sinðgn;ibÞ þ h2 cosðgn;ibÞ ð15dÞ

If one expresses coefficients B, C, and D as a function of

A, like

B ¼ � s1n;i
s2n;i

A; C ¼
k1?cn;i
k2?gn;i

A;

D ¼ �
k1?cn;i
k2?gn;i

s3n;i
s4n;i

A ð16Þ

the axial components of temperature from (12) become

W1n;i ¼ A sinðcn;ixÞ
�

� s1n;i
s2n;i

cosðcn;ixÞ
�

ð17aÞ

W2n;i ¼ A
k1?
k2?

cn;i
gn;i

sinðgn;ixÞ
�

� s3n;i
s4n;i

cosðgn;ixÞ
�

ð17bÞ
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Fig. 2. Function f whose roots represe
On the other hand, in order to avoid the trivial solution

of linear system in (14), the determinant of the square

matrix must be zero for each eigenvalue ki and bn, or

fn;i ¼ k2?gn;is1n;is4n;i � k1?cn;is2n;is3n;i

� k1?k2?Rccn;ign;is2n;is4n;i

� 0 ð18Þ

It means that the eigenvalues bn represent the roots of the

function fi over the variable b, for given ki. The func-

tion fi can be solved when two unknowns, cn;i and gn;i,
are changed with cn;i ¼ ðb2

n=a1? � K1k
2
i Þ

1=2
and gn;i ¼

ðb2
n=a2? � K2k

2
i Þ

1=2
, using (7). The solutions of fi give,

therefore, the eigenvalues bn, say bðiÞ
n for each eigenvalue

ki. Nevertheless, only those positive and bigger than zero

are taken for the final solution of temperature.

Function fi in (18) depends on b very awkwardly for

each ki. For example, supposing the parameter values

from Section 4, the function fi is presented on Fig. 2 for

k1 ¼ 0, and on Fig. 3 for k2 > 0. One can see that, for

k1 ¼ 0, the function fi is real in the whole domain of

positive values b, while its imaginary part appears when

k > 0. Then, there are, in fact, two different imaginary

functions, limited by zero, bðiÞ
c¼0, and bðiÞ

g¼0 (c.f. Fig. 3).

The latter two values are derived from

bðiÞ
c¼0 ¼ ki

ffiffiffiffiffiffiffiffiffiffiffiffi
a1?K1

p
; bðiÞ

g¼0 ¼ ki
ffiffiffiffiffiffiffiffiffiffiffiffi
a2?K2

p
ð19Þ

When bðiÞ
n < min½bðiÞ

c¼0; b
ðiÞ
g¼0�, both of cn;i and gn;i are com-

plex and the function fi becomes imaginary, too. For
0.00 0.04 0.08 0.12 0.16 0.20
×108

0

×108
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×108

Real function

β for λ1=0

root β1
(i=1)

nt eigenvalues bði¼1Þ
n for k1 ¼ 0.
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Fig. 3. Function f whose roots represent eigenvalues bði¼2Þ
n for k2 > 0.
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min½bðiÞ
c¼0; b

ðiÞ
g¼0� < bðiÞ

n < max½bðiÞ
c¼0; b

ðiÞ
g¼0� one of coefficients

cn;i and gn;i is imaginary and the function fi gets the

second imaginary form (Fig. 3). It can be proved easily

that there are no roots in the first imaginary form when

both cn;i and gn;i are complex. In the second form how-

ever, there is, at least, one eigenvalue bðiÞ
n and it rises

gradually with i. Regarding the real part of the function

fi, it always comprises the infinite number of eigenvalues.

Generally, from Figs. 2 and 3 one can easily notice

the fast alternation and very high amplitudes of the

function fi, which means very high function derivative.

This fact normally offers good possibilities for numerical

solution of function’s roots. Using the Newton–Raph-

son method for example, results can be obtained very

fast, but with one condition: it is necessary to have all

corresponding initial values, near to those of true ei-

genvalues. However, just this last requirement makes the

resolution of (18) still difficult.

Taking the same parametric values as above, the first

20 calculated roots bðiÞ
n for ki from i ¼ 1 to i ¼ 200 are

presented 3 on Fig. 4. Apparently, the distribution of

eigenvalues is quasi-regular, but hardly predictable for

small values of i.
There is another technique for determination of the

roots bðiÞ
n , which avoids the resolution of (18). Mikhailov

and Vulchanov [4] proposed a method for general forms
3 Every third i value is presented on Fig. 4.
of Sturm–Liouville problems, and for particular problem

of transient conduction in multi-dimensional composite

region [3]. This technique, named ‘‘sign-count’’, provides

the automatic computation of eigenvalues, and guaran-

tees, as stated, the highest precision and error-free results.

As it is said above, coefficients Pn;i in (9) can be deri-

ved from the characteristic of orthogonality of the

eigenfunctions in (11) and (17), and from the initial

conditions in (8f), (8g), (8h), and (8i). Namely, if one

develops, using (9), the initial radial and axial component

U1ðt ¼ 0Þ � uðrÞ,W1n;iðt ¼ 0Þ � F1, andW2n;iðt ¼ 0Þ � F2,
multiplies them with rJ0ðkjrÞ and W1m;i, i.e. with rJ0ðkjr)
and W2m;i, integrates from 0 to d over r, from �a to 0,

and from 0 to b over x, and makes an addition of these

two (single, for each layer) equations, one gets finally

q1c1

Z d

0

Z 0

�a
ruðrÞJ0ðkjrÞF1W1m;idrdx

þq2c2

Z d

0

Z b

0

ruðrÞJ0ðkjrÞF2W2m;idrdx

¼ q1c1
Xþ1

i¼1

Xþ1

n¼1

Pn;i

Z d

0

Z 0

�a
rJ0ðkirÞJ0ðkjrÞW1n;iW1m;idrdx

þq1c1
Xþ1

i¼1

Xþ1

n¼1

Pn;i

Z d

0

Z b

0

rJ0ðkirÞJ0ðkjrÞW2n;iW2m;idrdx

ð20Þ

where parameters q1c1 and q2c2 are so-called discon-

tinuous weight factors for multi-layered region, intro-
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4 This can be assumed for opaque solid materials.
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duced by Tittle [12]. Due to the orthogonality, products

J0ðkirÞJ0ðkjrÞ, W1m;iW1n;i, and W2m;iW2n;i are different from

zero only for i ¼ j and m ¼ n, so (20) reduces to

Pn;i ¼
2

d2J 2
0 ðkidÞ

Z d

0

ruðrÞJ0ðkirÞdr

� 1

Nn;i
q1c1

Z 0

�a
F1W1n;i dx

�
þ q2c2

Z b

0

F2W2n;i dx
�
ð21Þ

where

Nn;i ¼ q1c1

Z 0

�a
W2

1n;i dxþ q2c2

Z b

0

W2
2n;i dx ð22Þ

Solving the integrals in (22) and using some trigono-

metrical identities, the function Nn;i is equal to

Nn;i ¼ A2 q1c1
4cn;i

2
s1n;i
s2n;i

½1
(

� cosð2cn;iaÞ�

þ sinð2cn;iaÞ
s21n;i
s22n;i

 
� 1

!
þ 2cn;ia

s21n;i
s22n;i

 
þ 1

!)

þ A2q2c2
k21?
k22?

c2n;i
4g3n;i

2
s3n;i
s4n;i

½cosð2gn;ibÞ
(

� 1�

þ sinð2gn;ibÞ
s23n;i
s24n;i

 
� 1

!
þ 2gn;ib

s23n;i
s24n;i

 
þ 1

!)

ð23Þ

Knowing the functions F1 and F2 from the initial con-

ditions (8f) and (8g), the coefficients Pn;i become
Pn;i ¼ �4A
Q
d2e

Z df

0

ruðrÞJ0ðkirÞdr
1

J 2
0 ðkidÞ

1

Nn;icn;i

� sin
cn;ið2a� eÞ

2
sinn;i

cn;ie

2

�

þ s1n;i
s2n;i

cos
cn;ið2a� eÞ

2
sin

cn;ie

2

�
ð24Þ

If one assumes that the absorption depth of pulse energy

is much smaller than the thickness of the first layer

(e � a or e ! 0), 4 Eq. (24) takes a simpler form

lim
e!0

Pn;i ¼ �2A
Q
d2

1

J 2
0 ðkidÞ

1

Nn;i

Z df

0

ruðrÞJ0ðkirÞdr

� sinðcn;iaÞ
�

þ s1n;i
s2n;i

cosðcn;iaÞ
�

ð25Þ

According to (9,10,11), (17), and (25), the sample tem-

perature in the case of instantaneous incident pulse

(s ¼ 0) becomes

T1ðx; r; t; s ¼ 0Þ ¼ 2
Q
d2

Xþ1

i¼1

J0ðkirÞ
J 2
0 ðkirÞ

Z df

0

ruðrÞJ0ðkirÞdr

�
Xþ1

n¼1

1

Nn;i
sinðcn;iaÞ
�

þ s1n;i
s2n;i

cosðcn;iaÞ
�

�
�
� sinðcn;ixÞ þ

s1n;i
s2n;i

cosðcn;ixÞ
�
e�b2n;i t

ð26aÞ



5 This method is standard technique for thermal diffusivity

measurements.
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T2ðx; r; t; s ¼ 0Þ

¼ 2
Q
d2

k1?
k2?

Xþ1

i¼1

J0ðkirÞ
J 2
0 ðkidÞ

Z df

0

ruðrÞJ0ðkirÞdr

�
Xþ1

n¼1

1

Nn;i

cn;i
gn;i

sinðcn;iaÞ
�

þ s1n;i
s2n;i

cosðcn;iaÞ
�

�
�
� sinðgn;ixÞ þ

s3n;i
s4n;i

cosðgn;ixÞ
�
e�b2n;i t

ð26bÞ

where the function Nn;i is given by (23), but without the

parameter A.
Numerical evaluation of temperatures T1 and T2 from

(26) could be relatively long for some parameters of the

model, what depends primarily on the computation time

of eigenvalues bðiÞ
n from (18), whose total number should

satisfy the acceptable convergence of the expressions

(26). For example, very short transient temperature

times generally require great number of bðiÞ
n for each

eigenvalue ki. A detailed analysis of eigenvalues and

their behavior in a multi-layered slab, using the Carte-

sian coordinates and implying certain physical condi-

tions, are given by Salt [2].

3.1. The case of uniform heating

For practical evaluation of temperatures from (26)

one must have the non-dimensional function uðrÞ. Its
simplest form is unity, uðrÞ � 1, which represents the

uniform distribution of absorbed pulse energy or the

uniform sample heating. In reality, such heating can be

assumed under certain experimental conditions.

Setting uðrÞ � 1, the coefficients Pn;i from (24) be-

come

Pn;i ¼ �4A
Qdf
d2e

J1ðkidf Þ
kiJ 2

0 ðkidÞ
1

Nn;icn;i
sin

cn;ið2a� eÞ
2

sin
cn;ie

2

�

þ s1n;i
s2n;i

cos
cn;ið2a� eÞ

2
sin

cn;ie

2

�
ð27Þ

or when e � a or e ! 0

lim
e!0

Pn;i ¼ �2A
Qdf
d2

J1ðkidf Þ
kiJ 2

0 ðkidÞ
1

Nn;i

� sinðcn;iaÞ
�

þ s1n;i
s2n;i

cosðcn;iaÞ
�

ð28Þ

Before writing the final form of temperature in the case

of the uniform heating, the problem of the first root,

k1 ¼ 0, should be considered, because if one applies k1 in
(27) or (28), the term 0/0 will appear. However, if one

develops Bessel function of the first order, the expression

J1ðzÞ=z tends to 1/2 when z ! 0, and the indefinite term

will disappear. As a result, assuming the instantaneous

uniform heating, the sample temperatures finally be-

come
T1ðx; r; t; s ¼ 0Þ ¼ Q
d2
f

d2
1

"
þ 2

df

Xþ1

i¼2

J1ðkidf Þ
kiJ 2

0 ðkidÞ
J0ðkirÞ

#

�
Xþ1

n¼1

1

Nn;i
sinðcn;iaÞ
�

þ s1n;i
s2n;i

cosðcn;iaÞ
�

�
�
� sinðcn;ixÞ þ

s1n;i
s2n;i

cosðcn;ixÞ
�
e�b2n;i t

ð29aÞ

T2ðx; r; t;s¼ 0Þ ¼Q
k1?
k2?

d2
f

d2
f

1

"
þ 2

df

Xþ1

i¼2

J1ðkidf Þ
kiJ 2

0 ðkidÞ
J0ðkirÞ

#

�
Xþ1

n¼1

1

Nn;i

cn;i
gn;i

sinðcn;iaÞ
�

þ s1n;i
s2n;i

cosðcn;iaÞ
�

�
�
� sinðgn;ixÞþ

s3n;i
s4n;i

cosðgn;ixÞ
�
e�b2n;i t

ð29bÞ

where the function Nn;i is given by (23), without the

coefficient A. Multiplying the unity inside the first

brackets of (29a) and (29b) with the series over the

index n, the value i ¼ 1 is implied.

3.2. The case of extended heating

If the initial flux has the finite duration s, the solution
can be obtained using either the theorem of Duhamel

[13], applied on the expressions given by (26) or (29), or

the technique of superposition, proposed by Watt [14],

for the purpose of the laser flash method. 5 According to

the latter, the temperature of sample, being the result of

finite pulse heating described by a temporal function

Hðt; sÞ, is given by

T ðx; r; t; s > 0Þ ¼
R s
0
Hðt0; sÞT ðx; r; t � t0; s ¼ 0Þdt0R s

0
Hðt0; sÞdt0

ð30Þ

for t > s. For t6 s the same expression is valid, but with

parameter t instead of s for the upper limits of both

integrals [14]. Having (9), Eq. (30) reduces to

T ðx; r; t; s > 0Þ ¼
Xþ1

i¼1

Xþ1

n¼1

Pn;iWn;iUiC
�
n;i ð31Þ

where

C�
n;i ¼

R s
0
Hðt0; sÞe�b2n;iðt�t0Þ dt0R s

0
Hðt0; sÞdt0

ð32Þ



6 In order to emphasize the variation of the temperature

gradient rather than that of its absolute values, every frame has

its own temperature scale, shown on the right side. Therefore,

regardless the absolute temperature values, the temperature

range is always presented by full gray scale, from color white

(the highest temperatures) to color black (the lowest temper-

atures).
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The function Hðt; sÞ represents the evolution of pulse

energy and, in practice, it is usually approximated with

some standard theoretical form, such as rectangular,

triangular, or exponential one. For example, if the laser

radiative energy is approximated by the simplest rect-

angular form

Hðt; sÞ ¼ 1; 06 t6 s
0; t > s

�
ð33Þ

the function C�
n;i becomes

C�
n;i ¼

1

b2
n;it

ð1� e�b2n:i tÞ; 0 < t6 s

1

b2
n;is

ðeb2n:is � 1Þe�b2n:i t; t > s

8>>><
>>>:

ð34Þ

4. Numerical examples of transient temperature response

Theoretical temperature responses are computed

using the expressions for uniform instantaneous (Eqs.

(29), and extended (Eq. (30)) pulse heating, where the

pulse energy is absorbed superficially (e ! 0). The spa-

tial and temporal evolution of sample temperature is

presented on one type of multi-layered sample in the

form of two equally thick layers, but from two different

materials. Copper as good and titan as bad heat con-

ductor were chosen for layers’ materials. Only for

demonstration purpose, perpendicular and parallel

components of thermal diffusivities were kept equal. The

sample had the form of coin, small in thickness and large

in diameter. Constant parameters were a ¼ b ¼ 0:5 mm,

d ¼ 25:4 mm, df ¼ 5 mm, a1? ¼ a1k ¼ 9:3� 10�6 m2 s�1,

a2? ¼ a2k ¼ 1:15� 10�4 m2 s�1, q1 ¼ 4500 kgm�3, q2 ¼
8930 kgm�3, c1 ¼ 522 J kg�1 K�1, c2 ¼ 386 J kg�1 K�1,

h1 ¼ 50 Wm�2 K�1, h2 ¼ 50 Wm�2 K�1, and Q ¼ 100

Jm�2, while the values of thermal contact resistance Rc

and pulse heating duration s were varied.

4.1. Titan–copper sample with low contact resistance and

instantaneous pulse heating

In this numerical simulation, the thermal contact

resistance between the layers has been taken to be rela-

tively low, Rc ¼ 5� 10�6 m2KW�1, while the pulse

heating duration infinitely short (s ¼ 0). Then, temper-

ature distribution for a choice of moments after the

pulse heating looks like as presented on Fig. 5. Just after

the impact of incident flux, isothermal lines are located

around the incident surface of the first layer (Fig. 5(a)).

At the moment t ¼ 5 ms through the second layer, there

is already a certain level of heat conduction, shown on

the smaller diagram (the right-hand top side of Fig.

5(a)). However, such conduction is very weak, according

to much smaller temperature gradient than in the first

material. At t ¼ 10 ms (Fig. 5(b)), while the temperature
gradient in the first layer declines, in the second grows. 6

Isothermal lines begin to disperse into the sample axial

direction due to the high copper conductivity (the right-

hand top side of Fig. 5(b)). Later, at t ¼ 50 ms (Fig.

5(c)), heat in copper moves only in radial direction and

begins to do the same in the titan layer. Temperature

values fall in the first and increase in the second layer,

simultaneously. Far later, at t ¼ 500 ms (Fig. 5(d)), there

is no significant axial temperature distribution. After

long time period, in 5 s (Fig. 5(e)), the temperature along

and across the sample is practically uniform, but the

redistribution of small temperature gradient still exists.

Because front and back sample sides are under the

influence of finite heat transfer coefficients h1 and h2,
transient temperature tends to zero with gradient di-

rected to both basis surfaces. In 50 s (Fig. 5(f)), there is

no temperature gradient across the sample, while the

axial one is small, but greater than zero. The transient

temperature over the sample is near to zero, being

slightly higher in the second layer than in the first one,

because of the lower heat capacity of copper.

This numerical simulation shows the logical se-

quences of heat diffusion. The heat begins to diffuse in

both directions from impact surface to periphery and to

the contact between the layers. It passes gradually to the

second layer where the high thermal diffusivity of copper

straightens the isothermal lines very fast. At one mo-

ment, the temperature gradient orientates oppositely

and heat diffuses from copper to titan layer. Although

thermal contact resistance exists between the layers, in

this case it does not influence significantly the overall

temperature gradient.

4.2. Titan–copper sample with high contact resistance and

instantaneous incident pulse

Having the same parametric values as in the previous

example, but with thermal contact resistance two orders

higher (Rc ¼ 5� 10�4 m2K/W), the heat diffusion

through the sample is much altered. In this case, the

temperature distribution for different times after the

pulse heating is presented on Fig. 6. In comparison to

the example with low thermal contact resistance, heat

propagates from titan to copper layer with a significant

time delay. In 5 ms (Fig. 6(a)), copper received much less

initial energy than in the first example. The same situa-

tion is in 10 ms. Titan cools slowly and the temperature



Fig. 5. Temperature distribution in the case of titan–copper sample with low thermal contact resistance and instantaneous incident

pulse.

1636 N.D. Milo�ssevi�cc, M. Raynaud / International Journal of Heat and Mass Transfer 47 (2004) 1627–1641
gradient is almost directed radially over there. After 50

ms (Fig. 6(c)), the temperature of titan is still much

higher than that in the copper layer, although both
gradients are orientated radially. Situation is not much

changed in 0.5 s, too. At 5 s, the sample temperature

becomes almost equal, but with still existing gradient,



Fig. 6. Temperature distribution in the case of titan–copper sample with high thermal contact resistance and instantaneous incident

pulse.
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which begins to direct itself from copper toward titan

layer. Finally, in t ¼ 50 s (Fig. 6(f)), the temperature

distribution in this and previous example is practically

same.
As expected, high value of thermal contact resistance

has a strong effect on transient heat diffusion through

the sample. Namely, it delays the continuous heat dif-

fusion from first to second layer and vice versa.



Fig. 7. Temperature distribution in the case of titan–copper sample with low thermal contact resistance and prolonged incident pulse.
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4.3. Titan–copper sample with low contact resistance and

finite incident pulse

This example is the same as the first one (Section 4.1),

unless the pulse heating has finite duration greater than
zero, i.e. s > 0. The logical consequence is that the

temperature gradient and temperature values are higher,

at the same transient time, than those in the case of

instantaneous incident pulse. Numerical simulation of

this case is presented on Fig. 7. For t ¼ 5 ms (Fig. 7(a)),



Fig. 8. Temperature distribution in the case of copper–titan sample with low thermal contact resistance and instantaneous incident

pulse.
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just about the end of heating (s ¼ 5 ms), absolute values

of transient temperature and its gradient are higher than

in the first example (c.f. Fig. 5(a)) and concentrated

mostly around the incident surface. Nevertheless, such
differences are obvious only in a short post-pulse period.

At t ¼ 50 ms, for example, temperature and its gradient

are similar to those in the first case, and subsequently

they will practically be the same.
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Therefore, this numerical example shows that the fi-

nite pulse heating affects the heat diffusion only in the

period during and shortly after the sample heating takes

place. It is implied that the duration of incident pulse

does not generate the sample overheating, where the

problem becomes non-linear.

4.4. Copper–titan sample with low contact resistance and

instantaneous incident pulse

This example operates with the same parameters as

the first one, but with the inverse order of layer mate-

rials. The copper layer, therefore, absorbs the initial

pulse energy, and the titan layer receives the heat over

the contact with copper. Because copper is much better

conductor than titan, overall heat transfer through the

sample cannot be symmetric in the first period after the

heating.

The distribution of transient temperature is presented

on Fig. 8 for this case. Soon after the heating, at t ¼ 5

ms (Fig. 8(a)), isothermal lines in copper turns axially,

so that the temperature gradient exists for the most part

only in radial direction. At the same time, heat advances

already toward the second layer. At 10 ms (Fig. 8(b)),

the heat begins to flow radially through the second layer,

while at 50 ms (Fig. 8(c)), the temperature gradient in

titan is mostly directed toward the periphery. In the

same moment, however, the maximum of heat is con-

centrated around the sample center, on the back sample

surface. From that region, the heat diffuses then re-

versely, toward the first layer. Following sequences are

practically completely symmetric in comparison with

those of the first example.

Therefore, the simple rotation of the sample,

regarding the direction of pulse heating, changes tem-

perature values and gradient only in the first transient

period. When the heat passes through the contact and

reaches the surface of the second layer, the rotation of

sample layers has no practical effect on the temperature

distribution, because the heat propagates symmetrically

over the entire sample.
5. Conclusion

Two-dimensional transient heat conduction in two-

layer composite slab in the case of short, non-uniform

pulse heating can be analytically described by the sepa-

ration of variable method, using cylindrical coordinate

system. In order to resolve three systems for each space

and time variable, one needs to have separated bound-

ary and initial conditions. This can be achieved only by

setting the lateral boundary conditions to be of either

first or second order.

The solution of the transient temperature, being a

function of model’s parameters, represents a double
summation over two eigenvalues: one as the roots of

Bessel function of the first order, and the other as the

solution of a particular function that depends on both

first eigenvalue and also model parameters. At least two

numerical methods are available in the literature for the

computation of both eigenvalues.

Characteristics, such as finite thermal contact resis-

tance between the layers, cylindrical anisotropy of mate-

rials’ thermal diffusivity or conductivity, and finite

absorption depth can be readily included into the theo-

retical model. The effect of finite heating time can be

considered separately, by the method of superposi-

tion.

Using the thermophysical properties of titan (bad

conductor) and copper (good conductor), with low and

high thermal contact resistance, and with instantaneous

and extended pulse heating, the distribution of transient

temperature over the sample for different time values

after the heating is computed and presented for dem-

onstration purpose. Numerical examples have shown

that the heat diffuses in all directions, including the re-

verse one. The thermal contact resistance has the effect

of ‘‘thermal barrage’’, which slows down the heat dif-

fusion over the contact and forces the radial diffusion,

while the finite heating time has the influence on tem-

perature values and gradient during the period and after

the heating.

With given analytical solution the transient temper-

ature of two-layer sample could be completely described

at any time, in any sample point, and for any set of

parametric values. This information is important for

design, optimization, and characterization of layered

structures when a non-periodic pulse heating takes

place.
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